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f. OPTIMUM iNTERCEPTION OF A £aulISTIC MISSILE AT MODERATE RANGE

The problem of intercepting a ballistic missile optimally
. At moderate rangs ia: discussed in this report. The problems

1. of‘minimum time and minimum fuel consumptlon are discussed
‘,-specifioally. A procedure is given for determining the trajec- ;

"'tory on a digital computer, and some necessary and sufficient

'f'jw-conditions are given for the corresponding optima.

. 'Tne'computational procedure is a method of succegsive |
"approximations. The simpler cases have been checked out on the

. digital computer and further programming is under way. In the

'iexamples?run,-each iteration takes somewhat less than one second
computing time on the CDC 1604. From three to six iterations

‘ j:. are usually required to determine a trajectory, so that the tra-

Jectory 18 determined in five seconds or so.
The variational equations which are used to determine’ the

tra jectory can also be used to determine the corrective thrust
should the actual traJectory deviate slightly from the planned

. trajectory.

" The following simplifying assumptions are made. The speed
ici of the emitted gases of the rocket is assumed to be a constant

i 3jof the rocket. The actlon takes place above the sensible atmos-

'phere 80 that aerodynamic forces are negligible. ' The particu-
lar cases are considered wherein the range of the action is

small enough that'gravity'is constant during the flight or can

be approximated as a linear function of displacement the case

of central body motion is also discussed very briefly. Much,

of the paper is restricted to the case of plane motion, where

the motion of the rocket and the target lie in a properly defined
.plane, This is for simplicity in prOgramming and not-a restric-*
| tion on the method. Most of the procedure is elementary and
' hence the paper is somewhat expository.




Lo - i
2, Baslc =2quutions
The eque-ion of wotlcor of & rocket in & g.avitational

field and with no outs.ae icrces may be written as

(1) %: “g‘+"§,

where T 18 the position vector, § 1s the acceleration due
to gravity, & 1s the acceleration due to thrust, and a dot
(") over a variable indlcates its time derivative. We may
write '

(2) a = -c'n/(l -me,
"where m 1s the ratio of the mass of fuel which has been
consumed to the initial gross mass of the rocket and € 1is a

unit vector in the direction of the thrust.
A useful kinematlc relation 1s the following,

t . t . .
(3) ﬁ a dt = c"g %_%;E = -¢' 1n(l-m) .

Since the fuel consumed 1s proportional to m and 1n(l-m)
is a monotonic function of m, conditions involving the final .
. velue 'of mass may be rephrased in terms of the integral of the¢ﬁﬁwwwlﬁ
" acceleration, subject to the constraints on the size of Mo oo
For practical purposes we may take m as being bounded above
‘by a constant and bounded below by zero, and 1t may be chosen

f”,anywhere between or on these bounds as long as any fuel remains.

Integrated form of the equations of motlon. For the case | | . .
- where gravity may be consldered oonstant the equatlons of motlon

may be written ' '

(4) ,

(X =48& cos D
{y = a sln P - g

' for two-dlmenslonal motlon. with the y axis vertlcal. If

ﬁkJ;Ef gravity may be satisfactorily approximated by a 11near function
”fhl?'g .of the displacement these become ]
8, _ (X = —bzx +.8 co8 D ,.
IR
; y = +B y + as8lnp - g ’

[

Qhﬁﬁi ""where g 18 the gravitational acceleration at the origln
drowar. of coordlnatesu. b2 =,g/rE » With rp the distance from the
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origin ol cocrcin- o bhe earth e cect . ond Bz' = 2 b2.

. The correcponding %= ' :isement may be expressed at any -~
.- time T as )

T ) .
x(T) = x5 + XoT + y; (T-t) & cos p dt
(6) '

. T : :

y(t) = y5 + yoT - gr?/2 + l; (T-t) a sin p 4t

and |
L %(T) = x.cos BT + X0 sin bT + & (T 1n b(T-t) ¢ at
= cos sin + 3= a - co08
0 = & By B P

(7) - :

y(T) = (yo+B)cosh BT + (j,/B)sinh BT - g/B’

B

T
+‘(1/B)5~ a sinh B(T-t) sin p at.
0 .

'Jj. Extremals.

The curves which correspond to optimum motion from one
point to another are called extremals. They may be charac-
terized for the case where the velocity does naot enter 1in the
terminal conditions (and if gravity is linear, for T <1/2b).
as follows.

First, the thrust must be a maximum for & properly chosen
initial period, and zero thereafter. This is a consequence of
the fact that the coefficient of a cogs p and a sinp 1in '
equétions (6) and (7) diminish with time,

Second, the direction of the thrust is glven by

(8) tanp = o,
or
e o AR
accordingly.as'the equations of mofion are taken as (4) or (5).
Equation (8) or (9) is called the steering equation. |
An elementary proof is given in séotioﬁ (5) to
ghow that these conditions are sufficient to describe an ex-
‘tremal, and henceforth only trajectorlies wherein the thrust

_satisfles these conditions will be considered,
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| | The equa:iog “OURe L i Lldu ua o veekoel at any time
-~ (6) and (7) wiis e ceplac oy |
el x(T) = x4 X T+ i '(T—t) a cos p dt
oy | o * ot *
g (10) ) . X 'l t . ) '
o s y(T) =yq + 7,7 - gl 2/2 + Jﬁ Y1-t) a sin p at ,
i 0 . '

: qherq 'tan p=c¢, and

Xx.co8 bT + (io/b) sin bT +

(X(T) = xg
' | 2, (%1 2,
i + (1/b°) (a/R)sin“b(T-t) 4t ]
’ (11) o :
- $(T) = (yy+ g/B%)cosh BT +(§,/BTsinhBT - g/B%
. | 2, (Y v 2
¥ : + (c/B%) (a/R)sinh“B(T+t) dt

 where R =7(1/b)%sin®0(T-t) + (c/B)%sinn’B(T-t) , and t g T.
o the problem of determining ean optimum trajectory is then reduced
to that of finding' ej tl, and T, since these characterlze an

extremal.

4. Differentials of extremals.

Formulas are dérived here for the changes in terminal
values of the coordinates due to small changes in the parameters
of the extremals.

Let us conslder now two extremals, near together in the
following sense. One extremal corresponds to a set of values

'-p”tl,T and the other corresponds to a neighboring set p+bp,
't1+6tl,T+6T in equations (10). Then the resulting change in. .
. the terminal values of x and y are

“6X

t .
(io + (‘la.cos p dt)OT +.[(T-t)a cos p]t 6t1
0 | Py RE NI

L
- ( a s8in p dt op ,

. 0 ..
(12) - £,
oY (io + .[ a sin p dt)&T +[(T-t)a sin p]t bt +

Tk 1

\

T T
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‘ + T a3 e ‘nobp,
Iy -
for gravity consbani 7 all 1pit1ai values are specifled.

If thexlinear,approximation to the gravitational field is
used, the equations for the variations are more involved. 1In
the following equations let C,S,Ch,8h denote cos b(T-t),

" sin Db(T-t),cosh B(T-t),sinh B(T-t), respectively. Then

R = 7(5/0)%+(c Sh/B)?, and

L)

Lt
l . .
X = F[ a(cosjp C + 2 sinzp cos pC-~c coszp sin p Ch)dt
0

- bxysin BT + kjcos bI]ST + (asz/abz)tlbpl

SRR £
. . : 1 5 '
. -~ (18)) - (l/c)"f\ a R sin“p cos’p dt be
- 0
2

t .
oY = [ (‘ a(2 coszp gsin p Ch + sinjp Ch - %sin p cos p CJat
0 ‘

- +(Byy.+ %)sinh BT + yosihh BT]&T + (ac S‘hz/RBz)tl&t1 ,

- TR 2 2
+ (1/¢“)} a R 8inp cos”p 4t &c ,
' 0
'_ﬁhere tan p = %E'gh .

5, Fixed point in fixed time, with minimum fuel consumptlon.
Let us. now consider thé problem of sending the rockét to
the préscribed bolnt Xz,Xz in specifiedltime T, wiﬁh minimum'"
fuel consumption. The initial values are all assumed to be K
giveh.. The problgm i1s that of finding the values of cyty ' 80
© that x(T) = Xp, ¥(T) = Y,. |
Suppose we .guess g palr of values for tl and ¢ (or p),
and compute the corresponding trajlectory. The end values will
! not be correct generally{ let the errors be
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Wow set ,

g 6X /
. Y =~F

and use the formulas developed for ©&X,6Y. Then
. 6 )
[(T-t)a cos'p]t 6t - (ﬂ (T-t) @ sin p df 6p = -E
; 1 0

]
]
=

(16)-. tl
[(T-t)a sin p]t bty + ( (T=t) a cos p dt op = ~F
- 1 0

for constent gravity, and for the linearized equations

£y
. ,(aSz/sz)t 6ti - %[f aR slnzp cbszp dt 8¢ = «E
: . 1. 0 ' 0
\(aShZ/RBZ)t 6t1 + lgjr al sinzp coszp at &¢ = ~F.
o 1 ¢ /0

s j The values of ép(or 6c), 6tl determined frgm this yleld
new values for p,tl. Using these, we compute a new trajec- .
tbry'and éorrect, repeating - until E2 + F? 18 less than

' some preassigned value, a convergence qriterlon} \No.oonvergence
probiems were enbountered and a brief discussion of the resﬁlts.

1

is given in section 9.

"+ 6. Proof of minimum fuel consumption. A Mayer reciprocal

~ relation. ' . '

The proof is given here that the curve Cc* found in the'
previous section has the lowest value for JBTa.dt for admis-
sible paths. 'An admissible path 1s one wheredn the bounds on

. a are satisfied and the proper initial and final values are
assuhed. A corollary result 1s the equivalence betwesn problems
-of,speoified displacement with minimum fuel consumption and fhose
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.of specified fuel consumption and maximun displacement, ete. :
. known as Mayer reciprocz’ r=lations.

" The proof will be carried through for equations:(s); the
,ﬁroof for constant gravity is gilven in other reports.already.-
Suppose we have found c,t; 1in the previous section so that

E,F are zero. Denote by an asterisk (*) the quantities on
that path C* and by capital letters the co“responding quan=-
tities on any other admissible path.

-

If in equations (7) the second is multiplied by c¢ and the
two are added, the resulting equation may be rewriltten, for any
admissible path

(18) (X, - x,cos bT - Osin oT) + ofY, - (yy+ E-)cosh BT -
2 0 T 0 BZ

- Y0sinh BT + 55]
B B

i T 1 c
= a[SS'cos.p + gSh sin pldt .
0

Now everything on the left side of thls equation is completely
determined, either from the initial conditions and final con-
ditions, or from c¢ which has been found. Hence the right
gside is also determined,

Now suppose there is another admissible path for which the
fuel cOnsumption does not exceed that on C*. Then

. T T 21
1 (19) ( A dt'g a¥dt = | a¥dt,
0 -0 0
Let
| By S ,
(20} (a¥*=-A)dt =D .
. 0
Then, from (19) and (20)
. N '
(21) A dt < D.
tl w0

~ Now subtract the expressions obtained from (18) for the two paths.
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: t
. 1 ) .
(22) 'J; a*(%S‘cos p* + %Sh.sin p*)at

: i Ul T . . ! : . h . .
; - j;.AC%S cos P + %Sﬁ'ain P)at = 0 ° S

Now,. from equafion (9)
' . I 1 ' Ilo % f
(23) - £S5 cos p* + ES% sin p* = R,
where - - . .
B? = (1)%s?% +(2)%sh2 |
as defined earlier. ‘Note that R 1is a decreasing function of
.t for VYT < 1/2, and B(T) = 0. In view of this (22) may be

;rewrltten'

T
(24)JH l(a*-A)Bdt + Jﬁ AR[l - oos(p*-P)]dt - [; ARcos(p -P)dt

I'g 09
Now

[\V

! It
(a*-A)R dt B(tl)Jﬁ (a*-A)at
0 : - ()

i

'rftl)D

T T
{‘ AR cos(p*-P)dt < ja AR4dt
=

b | !
T
< R(tl)(‘ A dt
= t
1
< DR(tl) ;

80 that the sum of the first and last integrals in (24)is posi-
 tive or zero. The second integral 1s also clearly poslflve or.
zero. Inspection reveals further that the integrals in (24)
'"have a sum which 1s not zero unless a* = A except on a set of
measure zero. Hence the curve found in the preceding section
leads to a mihimum value for the fuel consumption for that value

of T and ls unique.

\
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" Mayer=reoiprocal rslation. Actually the trajectory C* Just

 'found represents an optimur relation among the set of variables

‘xo.yo,io,io,X,Y,mz. For consider all by one of these as being
‘prescribed as on C*. For example, take all but X, @&s having
_prescribed values. Let an admissible curve be one on which
yd,io,io,x,l,mz assume the values they assume on C%, with T
- fixed. _ '
Then 'xo. assumes 1ts minimum value on C* for admissible
curves. :
' Té'show this, let us consider equation (18) for the two
curves. Everything on the left is prescribed except the term
involving xg. Hence

t

o ‘ C T _
(25) (-xs + Xo)cos bT = Jﬂ lo¥r at - Jﬂ ARcos(p*~P)dt
0 .

0
Now the right side of this equation is positive unless X = E*,

' by the arguments given earlier in this séction. Since 0 < bT

';<'W/2, ﬂxg < Xb unless A = a*, -

| -Similarly, if c is positive, Yo iz a2 minimum if all the
other quantities are fixed as on C*. We see that if all but

' 'fone of .the séu_is Tixed and if ¢ 1is positive, them C* defines

" a min;yum for xo'yoiofio'mz and & maximum for  X,,¥,.

This 1s the Mayer-reciprocal relation among the éet Just
discussed ox C*. 1In some cases, T may be included in the set
' but'generally 1t. may not be. The important concept in the Mayéré'

“reciprocal relation is that an extremal furnishes not Just a | |
maximum or a hin;mum for one variable but rather an optimum
: relation among a set of ?ariables. Thréughout the probleﬁs
. solved in this papef} we seek a curve such as C* which satis-
- fies Just the'speclfled conditions.
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8. Interception i: minimum ‘iuwe for incoming target.
The problem of intercepting a ballistic missile in minimum
time 1s solved here. 7The equations used are those for the case

where gravity is constant.
' The relative motion of the missile and the target may be
written, in a suitably chosen coordinate set as

. ti
= X, + Xt = (t-T)a cos p dr,
0o+ %o " g

t'.‘-'r
o . 1
(25\F = Y, + Y.t - (t=T)a sin p &7,
0 0 0

G::ZO-O-ZOt:ﬂ.
The rumber p* is determined as follows. There is a maximum

1
timax £OT by, and in equations (25), t% =t if t <

* . :
tlma.x and tl T tlmax irot > tlmax‘
problem is to make this decision.
To start the computing routine, we chose the firsi estimate /,ﬁﬁC
of p so that the direction was about 600 from the initial ligggﬁ“"

o

value
Part of the computing

of sight from rocket to target. The equations of motion wer@ﬁ
then integrated until E2+F2 began to lncrease. This deter-
' mined the first estimate of T. 'Then the variational equations
(12) were used with (25)

'8E

. P t# .
‘ 1 1 -~
(X, - a cos p dt)oT + r (P-tlasin p dt &p
2 0 0 . o

(26} o . £ : ,
- [6F (¥, - a 8in p dt)8T .- (T-t)a cos p dt 6p. |
2 ° 0o - -

To get new estimates of T,p set

 (BE, = -E | R
(2‘71{ & 4 R
oF, = -F, . . .

and solve for &T,8p. This defines a'new approximating traJec-i

" tory. For this and subsequent iterations, the value of T 1is

~determined in this fashion, rather than by seeking a minimum

value for E2+F2. The computation is terminated when E§+F§ _

is below a prescribed number.
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The t:adaa{oty oLk cabOve could reprosent 2 max lmum
or a minimum value of T there are various ways to check. '
.'FOne way 18 to diminis. ©1 by an amount ~6t1 and calculate -
‘the corresponding increment &T. If 6T/6tl < 0, then T is
" as least & relative minimum. The oase whers the rooket osn
-"dump" fuel 1s not considered. If the target ig not initially
incoming, then another method must be used to get the first
estimate of T,

-

8. Interception with minimum fuel consumption.

‘The problém of intercepting a ballistic target with mini-
mum fuel consumption is dlscussed here for an incoming target.
As 1n sectlon 7 the equations of motion used are those for
constant gravity. '

For 1ntebcept;on, the. two equations must be satisfied

't
. 1
fXO + X, T (' (T-t)a cos p dt
! 0.

(28) !
\xo P YOT

a8 1n the preceding section. There are three parameters
p,tl,T and -only two equations so there is one degree of free-
dom in the cholce of the trajectory. The third equation 1s
obtained from the condition dtl/dT = 0, as follows. Consider
- two meighboring interception trajectories, each satisfying (28).
" On the second the values p, tl,T are replaced by p+bp, tl+6t
T+6T. Since both trajectories satisfy equation (28),

_ ’7t1 o
(XO - Jd .a cog p dt)8T - (T-tl)a(tl)cos p 6tl

&y
r“ (T-t)a sin p dt
0

L J (T-t)a siln p dt 6p = 0
. 0]
C2h I
(T4~ Jo @ sin p db)6T - (T-t))a(s))ein p bt -

L(r-t)a cos p at &p = 0
0 : .
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iminated  the cquation resulis

‘When ép 1is 21
' t. ' Tl

1

7(39) I(ko - | .'a cos p 4tjcos D+ (io - JO a 8in p dt)sin p]éf'

(T-tl)a(tl)btl ; 0 f

The case where "%, =T 1s an extreme case and will be ex-
cluded from consideration here. For a minimum value of tl,
o . 21 : . t , ' .
(31} (io'-'{; a cos p dt)cos p + (Yy - (;‘ a sin p dt)sin p = 0.
In formal calculug of variations, this is.a transversal condition.
Since the terms in parentheses are the components of the relative
velocity vector for t > tl, thls condition may be interpreted
~.as the condition that the relative veloclity be perpendicular
to the direction of thrust, for t > tl. If the target follows
& Known maneuver, this condition may hold only at time T.
Computational’ routine. Choose p 8o that the direction of

thrust 1s perpendicular to the initial line of sight. As before,
set | ¥

. | . | tl | ) .
| ‘0 + Xot.a ‘: (t=7)a cos p dr S e
(25) ‘)
F=Y,+ Yot - (; (t-=7)a sin p d1 ,

and guess tl. T may be elther be determined from p , or
' because the routine was set up from the preceding problem,
‘we computed E2+F2 until 1t began to increase to get the first. .

gstémate of T. :
From equation (30), a new value for p was obtained, and

hence . bp. Then from the equations

t i
5 1 ' ' e e
E = (X, - ‘E & cos p dt}oT - (thl)a(tl)cos p &t

tl N .
+ Iﬂ (T-t)a sin p dt b6p
(3 ) ©




1

' 6E = -E
(=) {
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,(32) k £,
- 6F = (Yo~ [ "a sin p dt)sT - (T-t,)a(t,)
' © : sin p 6ty
b3
- r (T-t)a cos p At 8p »
\o *

fof the variations and from

6F = -F ,

' :6t1,6T are determined. The value of T is determined

from (27) for'subsequent iterations, rather than from
the condition that E?+F? is a minimum. The valus for

'p '1s determined each time from (31) and then 6p, this

value being used in (32)to reduce it to two equations in
two ‘unkancwns,

' 9. Comments, other problems.

' The above method of solution applies generally to
problems wherein the velocity is not involved at the ter-
minal point, There is also a restriction that T be not
too ‘large if the linearized gravitational acceleration is
used, In these cases, R 1is always a decreasing function
of t; vanishing for t = T, and the acceleration is
then always to be applied initially. .

There 1s a growing awareness that problems in cale

culus of variations require the maximization of an in-

tegral, and that this in turn requirés the maximization

of an integrand. . The usual treatment of isoperimetric
problems (see Margenau and Murphy [l], P. 204) suggests
this. In formal calculus of variations this is done by

an ¢=6 procedure, but, particularly in the case of

linear differential equations it can often be done more
easily directly., The concept of miximizing the integral
has received considerable impetus recently due particularly
to papert by Pontrjagin [2],[3], The author first became
aware of it from a paper by Emerson [4], and the paper of
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Breakwell{5] brings out this property of extremals. The integral
in (18) is the functional of Pontrjagin, and the determination
of c¢;t;,T effects the construction of the functional,

The philosophy of solution here is that one may obtain a
~Solution by simple considerations of this maximizing principle,
and then verify that it is the solution, It should be observed
that the proof given actually only deals with the nature of the

extremals; the interrelations between the extremals and ‘the
manifolds whereon the terminal point lies are more complicated,
and we hava‘only discussed conditions for a stationary value.

For those interested in classic calculus of variations,

- the condition 1 - cos (p-P) > 0 is the Welerstrass condition
for the steering, The strict inequality is of course never satis-
fied for all values of P, since cos(p*-P) is pefiodic, but for
-practical purposes it is always satisfied since values of p
which differ by 2r are equivalent,

Comments on computation. The integréls were expressed as
‘differential equations and the system was integrated yzﬁafRﬁhgej
Kutta routine. It was selected for convenience in programming, -
with no attempt to attain speed. Each iteration, to obtain an
-approximating trajectory, requires about one second on the CDC
1604. The squared error E2+F2 tended to diminish by a factor
of &0-60 each time, The routine was assumed to have converged .
‘'when E2+F2 became less ! than 104(ft2) in the examples, A
further criterion should be cincluded corresponding to equation
(31) but in the examples run, which could be checked, it was hot
found to be necessary, probably due .to the fact that in this

problem, the valuss for the angle seem to “converge rapidly",

It usually took three to six seconds to determine a trajectory.
Some trajectories were continued indefinitely to obtain an.

. estimate of the accuracy of the routine. In the examples run,

)

the range was a few hundred thousand feet, the time of flight
lébout forty seconds and the initial acceleration of the rocket
due to thrust about 6 g . The terminal squared error . E¢+F®
‘reduced directly to about lo"lo(ftz),
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An interésting convergence problem was enpountéred in the
problem of interception in minimum time. The routine to determine
the trajectory was only for an extreme value of T. It seemed
obvious that for some values of the first estimates for ¢ ‘or
. tan p, a minimum value of T would be obtained, and for
other first estimates, a maximum value of T, Consequently
‘a series of trajectories were run, with various first estimates
for p, namely O,r/6,r/3,m/2,2r/3,5r/6,wm. The value of p
associated. with minimum T was about 1,6, and with maximum T,
3.2 (radians), For the initial estimates p = 0,m/6;1/3,m/2,
2r/3, the routine converged directly to the value p = 1.6,
For the initial value p = v, the routine converged directly
. to p=3.2, For the initial estimate p = 5r/6, the routine
did not appear to converge initially, but the successive
estimates of p varied in a random fashion. Finally p came
close to 14,17 and converged to this value, which is 1.6+4r,
- The method of solution is essentially a Newton's method, and
this is a fypical behavior when the starting values are not
near enough to the desired root,

These problems are among the simplest in the calculus of
variations since the equations are linear in the dependent varia-
bles. The use of a rather than the mass ‘simplifies the dif-
fefential.equations further, It can-be shown in several probiems
that if the time when the fuel is to be used is not specified,
then i1t is to be used when the magnitude of a veétor, ‘R in
this case, exceeds a certain value (this value to be determined),
and the fuel 1s to be used at the minimum rate whenever R is

.below the value; It i1s not known whether this relation is
general or not; no counterexamples are known to the authors.
 The procedures for solution, using the adjoint system, can
be applied to non-linear problems equally well, though no simple
complete proofs exist corresponding to the ones given here. In
This.case the adjoint system is ad Jolnt to the system of varia-
tional equations for the dependent variables, rather than the
original system, A report is forthcoming on this; éee also the
paper by Breakwell [5], though he does not treat the case where
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a 1s linear in the fuel consumption rate. The steering equi~
tion is probaEly first due to Lawden in published reports (sue
[6] for references)., The method of calculating differentials
is essentially that which Bliss formulated in Ballistics' (sen i
{7], Chapter V, for introductory theory, end p. 125, for early
pertinent i‘eferénces)° The theory is from lectures given at
Boeing in July 1960 on the applications of the adjoint system
in control. An appendix is planned, giving the computational.
‘details for this problem,
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Erratum
- The upper limit of the last integrél in equation (19) should be
tll, not ' T.o ' ! '
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